Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Yang, Junyuan (Ed.)Antimicrobial de-escalation refers to reducing the spectrum of antibiotics used in treating bacterial infections. This strategy is widely recommended in many antimicrobial stewardship programs and is believed to reduce patients’ exposure to broad-spectrum antibiotics and prevent resistance. However, the ecological benefits of de-escalation have not been universally observed in clinical studies. This paper conducts computer simulations to assess the ecological effects of de-escalation on the resistance prevalence ofPseudomonas aeruginosa—a frequent pathogen causing nosocomial infections. Synthetic data produced by the models are then used to estimate the sample size and study period needed to observe the predicted effects in clinical trials. Our results show that de-escalation can reduce colonization and infections caused by bacterial strains resistant to the empiric antibiotic, limit the use of broad-spectrum antibiotics, and avoid inappropriate empiric therapies. Further, we show that de-escalation could reduce the overall super-infection incidence, and this benefit becomes more evident under good compliance with hand hygiene protocols among health care workers. Finally, we find that any clinical study aiming to observe the essential effects of de-escalation should involve at least ten arms and last for four years—a size never attained in prior studies. This study explains the controversial findings of de-escalation in previous clinical studies and illustrates how mathematical models can inform outcome expectations and guide the design of clinical studies.more » « less
-
Abstract Background The COVID-19 outbreak in Wuhan started in December 2019 and was under control by the end of March 2020 with a total of 50,006 confirmed cases by the implementation of a series of nonpharmaceutical interventions (NPIs) including unprecedented lockdown of the city. This study analyzes the complete outbreak data from Wuhan, assesses the impact of these public health interventions, and estimates the asymptomatic, undetected and total cases for the COVID-19 outbreak in Wuhan. Methods By taking different stages of the outbreak into account, we developed a time-dependent compartmental model to describe the dynamics of disease transmission and case detection and reporting. Model coefficients were parameterized by using the reported cases and following key events and escalated control strategies. Then the model was used to calibrate the complete outbreak data by using the Monte Carlo Markov Chain (MCMC) method. Finally we used the model to estimate asymptomatic and undetected cases and approximate the overall antibody prevalence level. Results We found that the transmission rate between Jan 24 and Feb 1, 2020, was twice as large as that before the lockdown on Jan 23 and 67.6 % (95% CI [0.584,0.759]) of detectable infections occurred during this period. Based on the reported estimates that around 20% of infections were asymptomatic and their transmission ability was about 70% of symptomatic ones, we estimated that there were about 14,448 asymptomatic and undetected cases (95% CI [12,364,23,254]), which yields an estimate of a total of 64,454 infected cases (95% CI [62,370,73,260]), and the overall antibody prevalence level in the population of Wuhan was 0.745% (95% CI [0.693 % ,0.814 % ]) by March 31, 2020. Conclusions We conclude that the control of the COVID-19 outbreak in Wuhan was achieved via the enforcement of a combination of multiple NPIs: the lockdown on Jan 23, the stay-at-home order on Feb 2, the massive isolation of all symptomatic individuals via newly constructed special shelter hospitals on Feb 6, and the large scale screening process on Feb 18. Our results indicate that the population in Wuhan is far away from establishing herd immunity and provide insights for other affected countries and regions in designing control strategies and planing vaccination programs.more » « less
An official website of the United States government
